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Outline

▶ Last call, answering the question of How much processing can we done for monitoring came up

▶ Limits were set on 1 core per APA

▶ We took some raw data from ProtoDUNE and implemented a simple benchmark
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The data

▶ We are using data coming from long-readouts

▶ https://wiki.dunescience.org/wiki/ProtoDUNE-SP_long_TPC_readout

▶ We downloaded to our pcs the file felix-2020-06-02-101141.0.2.0.bin (how to make cmake work in dunegpvms?)

▶ Around 1 GB, 1 s of data

▶ The file contains arrays of WIB frames, data coming from a single FELIX link (256 channels)

▶ Frames are separated by 25 ticks of the master clock (2 MHz) = 500 ns
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The benchmark

▶ We use a modified version of a script by Phil. Rodrigues to read data from binary:

▶ dumpfile-to-text.cpp would dump all the info to a text file

▶ https://github.com/philiprodrigues/felix-long-readout-tools

▶ Modifications: it’s the input to our light histogram class, it’s also timed and it doesn’t output all the info
to a text file as before

▶ CMakeLists.txt modified to include optimization flags
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Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.h

#include <vector>
#include <string>

class Hist {

int FindBin(double x);

public:
double fLow, fHigh, fStepSize;
int fNentries;
double fSum;

int fSteps;
std::vector<int> fEntries;

Hist(int steps, double low, double
high);

int Fill(double x);

void Save(std::string filename);
void Save(std::ofstream &filehandle);

};
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Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

Hist::Hist(int steps, double low,
double high)
: fSteps(steps), fLow(low), fHigh(

high)
{
fEntries = std::vector<int> (steps,
0);

fStepSize = (high − low) / steps;
}
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Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

int Hist::FindBin(double x){
return (x − fLow) / fStepSize;

}

int Hist::Fill(double x){
int bin = FindBin(x);
/ / U n d e r f l o w , d o n o t h i n g
if(bin < 0) return −1;

/ / O v e r f l o w , d o n o t h i n g
if(bin >= fSteps) return −1;

fEntries[bin]++;
fNentries++;
fSum += x;
return bin;

}
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Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

void Hist::Save(std::ofstream &
filehandle){
filehandle << fSteps << " " << fLow
<< " " << fHigh << " " << std::
endl;

for (auto x: fEntries)
filehandle << x << " ";

filehandle << std::endl;
}
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Results

▶ The benchmark is run for batches of 10k frames (5 ms of data-taking, more or less similar to a DUNE
event)

▶ For each batch a histogram is filled for every channel and saved to a text file

Output:

Total elapsed (sec, wall time): 0.373
Total elapsed (sec, processing batch time without saving): 0.0448734
Total elapsed (sec, processing batch time with saving): 0.369829
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Some math

▶ Only processing, 0.045 s for 214 batches of 10k frames (5 ms), that’s .2 ms for each batch for a single
histogram per channel - 2 ms per APA

▶ Counting saving time to a text file (may not be optimal), it’s 1.73 ms - 17.3 ms per APA

▶ Adding another histogram increases time by ∼ 2
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Cross-check

▶ A small pyROOT script is used to check that these histograms that we are saving are good

import ROOT

f = open(’hist_12.txt’)
steps, low, high = list(map(int, f.readline().split()))
entries = list(map(int, f.readline().split()))

h = ROOT.TH1F(’hist’, ’hist’, steps, low, high)

for i in range(1, len(entries)+1):
h.SetBinContent(i, entries[i−1])

h.Draw()

input(’Press enter to finish’)
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Output
▶ One example of histogram from the text file outputs

hist
Entries  100
Mean     2352
Std Dev     39.84
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Output

▶ One file for each batch
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Output
▶ Example of a file, two rows for each histogram, the first one with the number of steps, low limit and

high limit and the second row with the entries in each bin
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Backup
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